5,256 research outputs found

    Computational procedure for finite difference solution of one-dimensional heat conduction problems reduces computer time

    Get PDF
    Computational procedure reduces the numerical effort whenever the method of finite differences is used to solve ablation problems for which the surface recession is large relative to the initial slab thickness. The number of numerical operations required for a given maximum space mesh size is reduced

    Bound States of (Anti-)Scalar-Quarks in SU(3)_c Lattice QCD

    Get PDF
    Light scalar-quarks \phi (colored scalar particles or idealized diquarks) and their color-singlet hadronic states are studied with quenched SU(3)_c lattice QCD in terms of mass generation. We investigate ``scalar-quark mesons'' \phi^\dagger \phi and ``scalar-quark baryons'' \phi\phi\phi as the bound states of scalar-quarks \phi. We also investigate the bound states of scalar-quarks \phi and quarks \psi, i.e., \phi^\dagger \psi, \psi\psi\phi and \phi\phi\psi, which we name ``chimera hadrons''. All the new-type hadrons including \phi are found to have a large mass due to large quantum corrections by gluons, even for zero bare scalar-quark mass m_\phi=0 at a^{-1}\sim 1{\rm GeV}. We conjecture that all colored particles generally acquire a large effective mass due to dressed gluon effects.Comment: Talk given at The 17th International Spin Physics Symposium (SPIN2006), Kyoto, Japan, 2-7 Oct 200

    Detection of flux emergence, splitting, merging, and cancellation of network field. I Splitting and Merging

    Full text link
    Frequencies of magnetic patch processes on supergranule boundary, namely flux emergence, splitting, merging, and cancellation, are investigated through an automatic detection. We use a set of line of sight magnetograms taken by the Solar Optical Telescope (SOT) on board Hinode satellite. We found 1636 positive patches and 1637 negative patches in the data set, whose time duration is 3.5 hours and field of view is 112" \times 112". Total numbers of magnetic processes are followed: 493 positive and 482 negative splittings, 536 positive and 535 negative mergings, 86 cancellations, and 3 emergences. Total numbers of emergence and cancellation are significantly smaller than those of splitting and merging. Further, frequency dependences of merging and splitting processes on flux content are investigated. Merging has a weak dependence on flux content only with a power- law index of 0.28. Timescale for splitting is found to be independent of parent flux content before splitting, which corresponds to \sim 33 minutes. It is also found that patches split into any flux contents with a same probability. This splitting has a power-law distribution of flux content with an index of -2 as a time independent solution. These results support that the frequency distribution of flux content in the analyzed flux range is rapidly maintained by merging and splitting, namely surface processes. We suggest a model for frequency distributions of cancellation and emergence based on this idea.Comment: 32 pages, 10 figures, 1 table, accepted to Ap

    Charmonium properties in deconfinement phase in anisotropic lattice QCD

    Get PDF
    J/Psi and eta_c above the QCD critical temperature T_c are studied in anisotropic quenched lattice QCD, considering whether the c\bar c systems above T_c are spatially compact (quasi-)bound states or scattering states. We adopt the standard Wilson gauge action and O(a)-improved Wilson quark action with renormalized anisotropy a_s/a_t =4.0 at \beta=6.10 on 16^3\times (14-26) lattices, which correspond to the spatial lattice volume V\equiv L^3\simeq(1.55{\rm fm})^3 and temperatures T\simeq(1.11-2.07)T_c. We investigate the c\bar c system above T_c from the temporal correlators with spatially-extended operators, where the overlap with the ground state is enhanced. To clarify whether compact charmonia survive in the deconfinement phase, we investigate spatial boundary-condition dependence of the energy of c\bar c systems above T_c. In fact, for low-lying S-wave c \bar c scattering states, it is expected that there appears a significant energy difference \Delta E \equiv E{\rm (APBC)}-E{\rm (PBC)}\simeq2\sqrt{m_c^2+3\pi^2/L^2}-2m_c (m_c: charm quark mass) between periodic and anti-periodic boundary conditions on the finite-volume lattice. In contrast, for compact charmonia, there is no significant energy difference between periodic and anti-periodic boundary conditions. As a lattice QCD result, almost no spatial boundary-condition dependence is observed for the energy of the c\bar c system in J/\Psi and \eta_c channels for T\simeq(1.11-2.07)T_c. This fact indicates that J/\Psi and \eta_c would survive as spatially compact c\bar c (quasi-)bound states below 2T_c. We also investigate a PP-wave channel at high temperature with maximally entropy method (MEM) and find no low-lying peak structure corresponding to \chi_{c1} at 1.62T_c.Comment: 13 pages, 11 figure

    Single domain YBCO/Ag bulk superconductors fabricated by seeded infiltration and growth

    Get PDF
    We have applied the seeded infiltration and growth (IG) technique to the processing of samples containing Ag in an attempt to fabricate Ag-doped Y-Ba-Cu-O (YBCO) bulk superconductors with enhanced mechanical properties. The IG technique has been used successfully to grow bulk Ag-doped YBCO superconductors of up to 25 mm in diameter in the form of single grains. The distribution of Ag in the parent Y-123 matrix fabricated by the IG technique is observed to be at least as uniform as that in samples grown by conventional top seeded melt growth (TSMG). Fine Y-211 particles were observed to be embedded within the Y-123 matrix for the IG processed samples, leading to a high critical current density, Jc, of over 70 kA/cm2 at 77.3 K in self-field. The distribution of Y-211 in the IG sample microstructure, however, is inhomogeneous, which leads to a variation in the spatial distribution of Jc throughout the bulk matrix. A maximum-trapped field of around 0.43 T at 1.2 mm above the sample surface (i.e. including 0.7 mm for the sensor mould thickness) is observed at liquid nitrogen temperature, despite the relatively small grain size of the sample (20 mm diameter × 7 mm thickness)

    Survival of charmonia above Tc in anisotropic lattice QCD

    Full text link
    We find a strong evidence for the survival of J/ΨJ/\Psi and ηc\eta_c as spatially-localized ccˉc\bar c (quasi-)bound states above the QCD critical temperature TcT_c, by investigating the boundary-condition dependence of their energies and spectral functions. In a finite-volume box, there arises a boundary-condition dependence for spatially spread states, while no such dependence appears for spatially compact states. In lattice QCD, we find almost {\it no} spatial boundary-condition dependence for the energy of the ccˉc\bar c system in J/ΨJ/\Psi and ηc\eta_c channels for T(1.112.07)TcT\simeq(1.11-2.07)T_c. We also investigate the spectral function of charmonia above TcT_c in lattice QCD using the maximum entropy method (MEM) in terms of the boundary-condition dependence. There is {\it no} spatial boundary-condition dependence for the low-lying peaks corresponding to J/ΨJ/\Psi and ηc\eta_c around 3GeV at 1.62Tc1.62T_c. These facts indicate the survival of J/ΨJ/\Psi and ηc\eta_c as compact ccˉc\bar c (quasi-)bound states for Tc<T<2TcT_c < T < 2T_c.Comment: 4 pages, 1 figur

    Scalar-Quark Systems and Chimera Hadrons in SU(3)_c Lattice QCD

    Get PDF
    Light scalar-quarks \phi (colored scalar particles or idealized diquarks) and their color-singlet hadronic states are studied with quenched SU(3)_c lattice QCD in terms of mass generation in strong interaction without chiral symmetry breaking. We investigate ``scalar-quark mesons'' \phi^\dagger \phi and ``scalar-quark baryons'' \phi\phi\phi which are the bound states of scalar-quarks \phi. We also investigate the bound states of scalar-quarks \phi and quarks \psi, i.e., \phi^\dagger \psi, \psi\psi\phi and \phi\phi\psi, which we name ``chimera hadrons''. All the new-type hadrons including \phi are found to have a large mass even for zero bare scalar-quark mass m_\phi=0 at a^{-1}\simeq 1GeV. We find that the constituent scalar-quark and quark picture is satisfied for all the new-type hadrons. Namely, the mass of the new-type hadron composed of m \phi's and n \psi's, M_{{m}\phi+{n}\psi}, satisfies M_{{m}\phi+{n}\psi}\simeq {m} M_\phi +{n} M_\psi, where M_\phi and M_\psi are the constituent scalar-quark and quark mass, respectively. M_\phi at m_\phi=0 estimated from these new-type hadrons is 1.5-1.6GeV, which is larger than that of light quarks, M_\psi\simeq 400{\rm MeV}. Therefore, in the systems of scalar-quark hadrons and chimera hadrons, scalar-quarks acquire large mass due to large quantum corrections by gluons. Together with other evidences of mass generations of glueballs and charmonia, we conjecture that all colored particles generally acquire a large effective mass due to dressed gluon effects.Comment: 9 pages, 9 figure

    Anisotropic Lattice QCD Studies of Penta-quark Anti-decuplet

    Full text link
    Anti-decuplet penta-quark baryon is studied with the quenched anisotropic lattice QCD for accurate measurement of the correlator. Both the positive and negative parity states are studied using a non-NK type interpolating field with I=0 and J=1/2. After the chiral extrapolation, the lowest positive parity state is found at m_{Theta} \simeq 2.25 GeV, which is too massive to be identified with the experimentally observed Theta^+(1540). The lowest negative parity state is found at m_{Theta}\simeq 1.75 GeV, which is rather close to the empirical value. To confirm that this state is a compact 5Q resonance, a new method with ``hybrid boundary condition (HBC)'' is proposed. The HBC analysis shows that the observed state in the negative parity channel is an NK scattering state.Comment: A talk given at International Workshop PENTAQUARK04, July 20-23, 2004 at SPring-8, Japan, 8 pages, 7 figures, 2 table
    corecore